Cycloaddition Reaction: Synthesis of 5-Substituted 1,3,4-Thiadiazolo[3,2-*a*]pyrimidin-6-one†

B. C. Dutta,^a K. K. Das^b and B. N. Goswami^{*a}

^aRegional Research Laboratory, Jorhat-785 006, India ^bDepartment of Chemistry, Dibrugarh University, Dibrugarh, 786 004, India

1,3,4-Thiadiazolo[3,2-a] pyrimidin-6-ones are synthesised by a (4 + 2) cycloaddition reaction of arylidineamino-1,3,4-thiadiazole and aryl ketenes formed *in situ*.

The diverse and interesting biological activity reported¹⁻⁵ to be shown by the thiadiazolo pyrimidine nucleus led us to synthesise the title compounds 1,3,4-thiadiazolo[3,2-*a*]-pyrimidin-6-ones. The synthesis involves a cycloaddition reaction involving a heterodiene system which is of great potential in the synthesis of heterocyclic compounds.^{6,7} Dienes containing two nitrogen atoms are also of great importance in natural product synthesis.⁸

In this paper a (4+2) cycloaddition reaction of arylidineamino-1,3,4-thiadiazole with ketenes is reported. Literature reports show that the cycloaddition of arylidine amines with phenylacetyl chloride in presence of triethylamine generally gives an azetidinone⁹ (β -lactam) ring system. However, the reaction of Schiff base 2 with ketenes, in our case, gives substituted 1,3,4-thiadiazolopyrimidin-6ones in good yield (Table 1). The ketene which takes part in the cycloaddition reaction is formed in situ during the reaction of phenylacetyl chloride with triethylamine. In this system a part of the heterocyclic moiety (1,3,4-thiadiazole) incorporated with the Schiff base comprises a heterodiene system and is the 4π component in the Diels–Alder reaction. 5-(2,4-dichlorophenyl)-1,3,4-thiadiazolo[3,2-a]pyrimidine-6-ones 3 were synthesised (Scheme 1) by the dropwise addition of chloroacetyl chloride, phenylacetyl chloride or *p*-methoxyphenylacetyl chloride in dioxane to a solution of an arylidineamino-1,3,4-thiadiazole in dioxane at 0-10 °C.

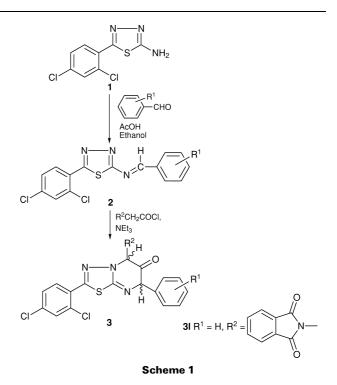
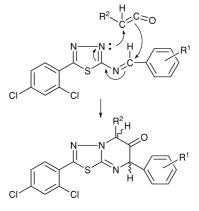

The structure of compounds **3** were assigned on the basis of elemental analysis and spectroscopic (IR, ¹H NMR and mass) data. The IR spectra (KBr) of compounds **3** showed

Table 1 Physical data of arylidineamino-5-(2,4-dichloro-
phenyl)-1,3,4-thiadiazoles (2a-1) and 5-(2,4-dichlorophenyl)-
1,3,4-thiadiazolo[3,2-a]pyrimidin-6-ones (3a-1)^a


Compound	R ¹	R ²	Yield (%)	mp/°C
2a 2c 2d 2g 3a 3b 3c 3d 3c 3d 3e 3f 3g 3h	H p-OMe p-NMe ₂ o-(OH, OMe) o-OH H H p-OMe p-NMe ₂ o-(OH, OMe) H o-OH p-NMe	Ph CI CI CI p-C ₆ H ₄ OMe p-C ₆ H ₄ OMe p-C ₆ H ₄ OMe	95 90 87 82 84 82 75 78 77 76 79 78 82	222 218 210 220 213 238 140 171 173 188 207 211 238
3i 3j 3k 3l	o-OH p-OMe p-NMe H	Ph Ph Ph N(CO) ₂ C ₆ H ₄	81 82 81 76	232 210 242 222

^aThe structure of the compounds were confirmed on the basis of spectroscopic analyses.

*To receive any correspondence.

v(C=O) at *ca*. 1710 cm⁻¹ which is at much lower wavenumber than that for an azetidinone carbonyl.^{9,10} The azetidinone molecule which is a strained four membered ring shows IR absorptions^{11,12} at high wavenumber (1775–1780 cm⁻¹). Tsuji¹³ studied the mass fragmentation modes of 1,3,4-thiadiazolo[3,2-*a*]pyrimidinones to determine the position of CO in the -5-ones and isomeric-7-ones and observed intense ions corresponding to loss of CO from the molecular ion. In both these types of compounds a retro-Diels–Alder (RDA) process was observed. This type of intense ion peak attributed to the loss of CO and a RDA process were not observed that β -lactam (azetidinone) molecules are less stable and have lower melting points^{14,15}

Scheme 2

J. Chem. Research (S), 1999, 36–37[†]

[†]This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S), 1999, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (M).

		Found (Required) (%)					
Compound	Molecular formula	С	Н	Ν	$v_{\rm max}/{\rm cm}^{-1}$ (KBr)	δ H (CDCl ₃ –DMSO-d ₆)	
2a	$C_{15}H_9Cl_2N_3S$	54.12 (54.05	2.62 2.70	12.50 12.61)	1600 (C=N)	5.46 (s, 1H, =NCH)	
2d	$C_{17}H_{14}CI_2N_4S$	`54.38 (54.26	3.48 3.72	14.95 [´] 14.89)	1600 (C=N)	2.20 (s, 6H, NMe, 5.48 (s, 1H, =NCH)	
2g	$C_{15}H_9Cl_2N_3OS$	`51.49 (51.58	2.39 2.58	12.00 [´] 12.03)	1600 (C=N)	5.48 (s, 1H, N=CH), 5.50 (s, 1H, OH)	
3a	$C_{23}H_{15}N_3CI_2OS$	61.09 (61.20	3.10 3.32	9.00 [°] 9.31)	1606 (C=N), 1710 (C=O)	3.92 (s, 2H, H-5, H-7), 6.1–7.2 (m, Ar-H)	
3b	$C_{17}H_{10}N_3CI_3OS$	49.68 (49.87	2.30 2.44	11.26 10.26)	1600 (C=N) 1710 (C=O)	3.94 (s, 2H, H-5, H-7), 6.1–7.2 (m, Ar-H)	
3c	$C_{18}H_{12}N_3CI_3OS$	`49.11 (49.20	2.60 2.73	9.40 [°] 9.56)	1600 (C=N), 1710 (C=O)	3.1 (s, 3H, OMe), 3.98 (s, 2H, H-5, H-7), 6.2–7.2 (m, Ar-H)	
3e	$C_{18}H_{12}N_3CI_3O_3S$	47.30 (47.47	2.60 2.63	9.15 9.23)	1610 (C=N), 1715 (C=O), 3400 (br, OH)	3.02 (s, 3H, OMe), 3.94 (s, 2H, H-5, H-7), 5.8 (s, 1H, OH), 6.1–7.2 (m, Ar-H)	
3g	$C_{24}H_{17}N_3CI_2O_2S$	57.75 (57.94	3.25 3.42	8.18 8.45)	1600 (C=N) 1710 (C=O) 3410 (OH)	3.2 (s, 3H, OMe), 3.92 (s, 2H, H-5, H-7), 5,6 (s, OH), 6.00–7.1 (m, Ar-H)	
3h	$C_{26}H_{22}N_4Cl_2O_2S$	59.23 (59.54	4.00 4.19	10.54 10.68)	1610 (C=N), 1710 (C=O)	3.4 (s, 3H, OMe), 3.94 (s, 2H, H-5, H-7), 5.7 (s, OH), 6.00–7.2 (m, Ar-H)	
3j	$C_{24}H_{17}N_3CI_2O_2S$	59.60 (59.88	3.40 3.53	8.52 8.73)	1600 (C=N) 1710 (C=O)	3.02 (s, 3H, OMe), 3.92 (s, H-5, H-7), 6.00–7.2 (Ar-H)	
3k	$C_{25}H_{20}N_4CI_2O_2S$	60.52 (60.72	4.00 4.04	11.20 11.33)	1600 (C=N), 1710 (C=O)	2.02 (s, 6H, NMe ₂), 3.92 (s, 2H, H-5, H-7) 6.1–7.2, (m, Ar-H)	
31	$C_{25}H_{14}N_4CI_2O_3S$	57.42 (57.69	2.38 2.69	10.51 10.76)	1610 (C=N), 1685, 1710 (C=O)	3.94 (s, 2H, H-5, H-7), 6.00–7.4 (m, Ar-H)	

Table 2 Analytical and spectroscopic data for compounds 2a-I and 3a-I

compared to six membered pyrimidinones which have high melting points. In view of these observations compounds **3** were proposed to be 5-(2,4-dichlorophenyl)-1,3,4-thiadiazo-lopyrimidin-6-ones. A possible reaction pathway is shown in Scheme 2.

Experimental

Melting points were taken in an oil heated Buchi apparatus and were uncorrected. The IR spectra were recorded on a Perkin Elmer 237 B spectrophotometer and the ¹H NMR spectra were recorded on a JEOL FX-90 (90 MHz) NMR spectrometer with TMS as internal reference. The mass spectra of the compounds were taken on a Finigan Mat (INCOS 50, GC-MS) mass spectrometer. The purity of the compounds were checked by TLC.

Preparation of Arylidineamino 5-(2,4-Dichlorophenyl)-1,3,4thadiazole (2a).—In a round bottomed flask, 2-amino-5-(2,4dichlorophenyl)-1,3,4-thiadiazole (0.490 g, 0.002 mol) and benzaldehyde (0.212 g, 0.002 mol) were added to 100 ml of ethanolchloroform (7:3) to which glacial acetic acid (1 ml) was added and the mixture refluxed for 6 h. The solvent was then removed under reduced pressure and the residue obtained was recrystallised from ethanol, mp. 222 °C, yield 95%, m/z 333 (M⁺).

Preparation of 5-(2,4-Dichlorophenyl)-1,3,4-thiadiazolo[3,2-a]pyrimidin-6-one (**3a**).—In a typical experiment, to a solution of benzylidineamino-5-(2,4-dichlorophenyl)-1,3,4-thiadiazole **2a** (0.333 g, 0.001 mol) in dioxane (25 ml) was added triethylamine (1 ml) and to this solution was added phenylacetyl chloride (0.154 g, 0.001 mol) in dioxane dropwise at 0 °C under stirring during 30 min. The reaction mixture was brought to room temperature and kept stirring for another 4 h at 60 °C. The reaction mixture after cooling to room temperature was poured into ice (100 g) and extracted with chloroform (2 × 40 ml), and dried over Na₂SO₄. Removal of the solvent under reduced pressure and recrystallisation of the residue gave a colorless solid: yield 0.336 g (75%), mp 238 °C. IR (KBr) v/cm⁻¹ 1710 (C=O), 1600 (C=N); m/z 451 (M⁺), 118 (PhCH=C=O), 245 (2,4-dichlorophenyl-1,3,4-thiadiazole), 91 (PhCH/PhCH₂); $\delta_{\rm H}$ 3.92 (s, 2H, C-5 and C-7), 6.1–7.2 (m, Ar-H). Received, 2nd March 1998; Accepted, 5th October 1998 Paper E/8/01720D

References

- 1 F. Russo, A. Santagati and M. Santagati, J. Heterocycl. Chem., 1985, 22, 297.
- 2 S. Masahito and M. Kazuyuki, Agric. Biol. Chem., 1977, 41, 2047.
- 3 T. Ramalingam, M. Sre Rama Murty and P. B. Sattur, *Heterocycles*, 1989, **29**, 925.
- 4 B. Ludwig, H. Dietrich, H. Horst, J. Guenter, K. Gerhard, R. Tilo, E. Thomas and T. Ernst. *Ger. Pat.*, DD 247003 (Cl C 07 D513/04, June 1987).
- 5 T. H. Althius, P. F. Moore and H. J. Hess, J. Med. Chem., 1979, 22, 44.
- 6 S. N. Mazumdar, I. Ibnusaud and M. P. Mahajan, *Tetrahedron Lett.*, 1986, 27, 5875.
- 7 D. L. Boger, Tetrahedron, 1983, 39, 2869.
- 8 S. Massanori, K. Miyazawa, K. Yamamoto and Y. Tomimathu, *Chem. Pharm. Bull.*, 1974, **22**, 2201.
- 9 S. D. Sharmah and S. B. Pandhi, J. Org. Chem., 1990, 55, 2196.
- 10 A. R. Katritzky and C. W. Ress, *Comprehensive Heterocyclic Chemistry*, Pergamon Press, 1st edn., 1984, vol. 7, p. 248.
- A. K. Bose and M. S. Manhas Cephalosporin, *Penicillins and other β-lactams, Lectures in Heterocyclic Chemistry*, ed. R. Newcastle and M. Tisler, vol. 3, supplementary copy of *J. Heterocycl. Chemistry*, vol. 13 and references cited therein.
- 12 J. Reiter, L. Pongo, P. Sohar and P. Dvortsak, J. Heterocycl. Chem., 1988, 25, 173.
- 13 T. Tsuji, J. Heterocycl. Chem., 1991, 28, 489.
- 14 A. K. Bose, B. Anzaneyulu, S. K. Bhattacharyya and M. S. Manhas, *Tetrahedron*, 1967, 23, 4769.
- 15 A. K. Bose, G. Spiegelman and M. S. Manhas, *Tetrahedron Lett.*, 1971, 34, 3167.